
Feature Team Primer
by Craig Larman and Bas Vodde

Version 1.3

Feature teams and Requirement Areas are key elements of scaling lean and agile
development. They are analyzed in depth in the Feature Team and Requirement Area
chapters of Scaling Lean & Agile Development: Thinking and Organizational Tools for
Large Scale Scrum. This short paper summarizes a few key ideas and can also be
found in Practices for Scaling Lean & Agile Development: Large, Multisite, and
Offshore Product Development with Large-Scale Scrum.

Introduction to Feature Teams

A feature team, shown in Figure 1, is a long-lived1, cross-functional, cross-component
team that completes many end-to-end customer features—one by one.

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
1	
 	
 	
 	
 	
 	
 All Rights Reserved

1 Feature teams stay together for years, implementing many features.

Team has the necessary knowledge and skills to complete
an end-to-end customer-centric feature. If not, the team is
expected to learn or acquire the needed knowledge and skill.

Feature team:
- stable and long-lived
- cross-functional
- cross-component

customer-
centric
feature

potentially
shippable
product

increment

Product
Backlog

Figure 1. Feature Teams

http://www.featureteamprimer.org
http://www.featureteamprimer.org

The characteristics of a feature team are listed below:

Feature Team

long-lived—the team stays together so that they can ‘jell’ for
higher performance; they take on new features over time
cross-functional and cross-component
ideally, co-located
work on a complete customer-centric feature, across all
components and disciplines (analysis, programming,
testing, ...)
composed of generalizing specialists
in Scrum, typically 7 ± 2 people

Applying modern engineering practices—especially continuous integration—is essential when
adopting feature teams. Continuous integration facilitates shared code ownership, which is a
necessity when multiple teams work at the same time on the same components.

A common misunderstanding: every member of a feature team needs to know the whole system.
Not so, because

The team as a whole—not each individual member—requires the skills to implement
the entire customer-centric feature. These include component knowledge and
functional skills such as test, interaction design, or programming. But within the team,
people still specialize… preferably in multiple areas.

Features are not randomly distributed over the feature teams. The current knowledge
and skills of a team are factored into the decision of which team works on which
features.

Within a feature team organization, when specialization becomes a constraint…learning
happens.

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
2	
 	
 	
 	
 	
 	
 All Rights Reserved

A feature team organization exploits speed benefits from specialization,
as long as requirements map to the skills of the teams.

But when requirements do not map to the skills of the teams, learning
is ‘forced,’ breaking the overspecialization constraint.

Feature teams balance specialization and flexibility.

http://www.featureteamprimer.org
http://www.featureteamprimer.org

Table 1 and Figure 2 show the differences between feature teams and more traditional
component teams.

Feature Team Component Team

optimized for delivering the
maximum customer value a

optimized for delivering the
maximum number of lines of code

focus on high-value features and
system productivity
(value throughput)

focus on increased individual
productivity by implementing
‘easy’ lower-value features

responsible for complete
customer-centric feature

responsible for only part of a
customer-centric feature

modern’ way of organizing teams b
— avoids Conway’s law

traditional way of organizing teams
— follows Conway’s law c

leads to customer focus, visibility,
and smaller organizations

leads to ‘invented’ work and a
forever-growing organization

minimizes dependencies between
teams to increase flexibility

dependencies between teams leads
to additional planning d

focus on multiple specializations focus on single specialization

shared product code ownership individual/team code ownership

shared team responsibilities clear individual responsibilities

supports iterative development results in ‘waterfall’ development

exploits flexibility;
continuous and broad learning

exploits existing expertise;
lower level of learning new skills

requires skilled engineering
practices—effects are broadly visible

works with sloppy engineering
practices—effects are localized

provides a motivation to make
code easy to maintain and test

contrary to belief, often leads
to low-quality code in component

seemingly difficult to implement seemingly easy to implement

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
3	
 	
 	
 	
 	
 	
 All Rights Reserved

a. The different optimization often makes the feature team feel slower—from the local view.
b. Relatively ‘modern’ as feature teams have a long history in large-scale development, for

example, Microsoft and Ericsson.
c. Mel Conway observed this undesirable structure in1968,he did not recommended it—in

fact, quite the opposite.
d. This additional planning is visible in more “release planning meetings” or “release trains”

and more management overhead.

Table 1. feature teams vs. component teams

http://www.featureteamprimer.org
http://www.featureteamprimer.org

The table below summarizes the differences between feature teams and conventional
project or feature groups.

Feature Team Feature group of feature project

stable team that stays together for years
and works on many features

temporary group of people created for one
feature or project

shared team responsibility
for all the work

individual responsibility for ‘their’ part
based on specialization

self-managing team controlled by a project manager

results in a simple single-line
organization (no matrix!)

results in a matrix organization with
resource pools

team members are dedicated—
100% allocated—to the team

members are part-time on many projects
because of specialization

Most drawbacks of component teams are explored in the “Feature Teams” chapter of
Scaling Lean & Agile Development, Figure 3 summarizes some of these.

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
4	
 	
 	
 	
 	
 	
 All Rights Reserved

Item 1
Item 2
Item 3
Item 4
...

…

system

comp
C

Team

comp
A

Work from multiple teams is required to finish a
customer-centric feature. These dependencies
cause waste such as additional planning and
coordination work, hand-offs between teams,
and delivery of low-value items.
Work scope is narrow.

Product
Owner

comp
B

Team

comp
A

Team

comp
B

comp
C

Item 1
Item 2
Item 3
Item 4
...

…
Team
Wu

Product
Owner

Team
Shu

Team
Wei

system

comp
A

comp
B

comp
C

Every team completes customer-centric items.
The dependencies between teams are related
to shared code. This simplifies planning but
causes a need for frequent integration, modern
engineering practices, and additional learning.
Work scope is broad.

Component teams Feature teams

Figure 2. feature vs. component teams

http://www.featureteamprimer.org
http://www.featureteamprimer.org

What is sometimes not seen is that a component team structure reinforces sequential
development (a ‘waterfall’ or V-model), with many queues with varying-sized work
packages, high levels of WIP, many handoffs, and increased multitasking and partial
allocation.

Choose Component Teams or Feature Teams?

A pure feature team organization is ideal from the value-delivery and organizational-
flexibility perspective. Value and flexibility, however, are not the only criterion for
organizational design, and many organizations therefore end up with a hybrid—especially
during a transition from component to feature teams. Caution: hybrid models have the
drawbacks from both worlds and can be…painful.

A frequently expressed reason in favor of a hybrid organization is the need to build
infrastructure, construct reusable components, or clean up code—work traditionally done
within component teams. But these activities can also be done in a pure feature team

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
5	
 	
 	
 	
 	
 	
 All Rights Reserved

Figure 3. some drawbacks of component teams

Backlog Item 1
Backlog Item 2
...

Comp A
Team

Comp B
Team

Comp
C

Team

Analyst System
Engineer

System
Testers

Iteration 1 Iteration 2
(probably later)

Iterations 3-5
(probably later

and more)

At least
iteration 6

(probably later)

Item 1

requirement
details

for Item 1

'backlog' by
component

not all teams start Item 1
at the same iteration;
they are multitasking on
multiple features system testers cannot

start immediately on
Item 1; they are
multitasking on
multiple features

not available
until the analyst
is finished

Analysis

Design

Implementation

Test

Component teams lead to a sequential life cycle with handoff, queues, and
single-specialist groups and not true cross-functional teams without handoff.

code

http://www.featureteamprimer.org
http://www.featureteamprimer.org

organization—without establishing permanent component teams. How? By adding
infrastructure, reusable components, or cleanup work to the Product Backlog and giving it
to an existing feature team—as if it were a customer-centric feature. The feature team
temporarily—for as long as the Product Owner wishes—does such work and then returns
to building customer-centric features.

Transitioning to Feature Teams

Different organizations require different transition strategies when changing from
component to feature teams. We have experience with many strategies that worked…and
failed in a different context. A safe—but slow—transitioning strategy is to establish one
feature team within the existing component team organization. After this team performs
well, a second feature team is formed. This continues gradually at the speed the
organization is comfortable with. This is shown in Figure 4.

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
6	
 	
 	
 	
 	
 	
 All Rights Reserved

Figure 4. gradual transitioning from feature to component teams

Item 1
Item 2

Item 3

Item 4

…

…

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

Product
Owner

Feature
Team
Red

tasks for A
tasks for B

tasks for A
tasks for B

tasks for A
tasks for C

contains ex-members from component
teams A, B, and C, and from analysis,
architecture, and testing groups

system

http://www.featureteamprimer.org
http://www.featureteamprimer.org

Introduction to Requirement Areas

Feature teams scale nicely, but when their number goes above ten teams—about a
hundred people—additional structure is needed. Requirement areas provide this structure
and complement the concepts behind feature teams. A requirement area is a
categorization of the requirements leading to different views of the Product Backlog.

The Product Owner (PO) groups every Product Backlog item under exactly one
requirement category—its requirements area. After this, he generates different views on
the overall Product Backlog—called an Area Backlog. The Area Backlogs are prioritized
by an Area Product Owner who specializes in part of the product—from a customer
perspective. Each Requirement Area has several feature teams working from the Area
Backlog, as shown in Figure 5.

Requirement areas are scaled-up feature teams. Scaling up by structuring teams
according to the product’s architecture is called development areas. Table 3 summarizes
the differences.

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
7	
 	
 	
 	
 	
 	
 All Rights Reserved

Figure 5. requirement areas

Backlog Item 1

…

...

Product Backlog
Backlog Items 1
Backlog Items 2
...

Performance

Backlog Item 3
Backlog Item 4
...

Protocols

feature
team

performance area feature teams

protocols area feature teams

Area
Product
Owner

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

Area
Product
Owner

http://www.featureteamprimer.org
http://www.featureteamprimer.org

Requirement Area Development Area

organized around
customer-centric requirements

organized around
product’s architecture

no subsystem code ownership code ownership per subsystem

temporary in nature;
should change over the lifetime of the

product, but not at every iteration

tends to be more fixed over
the lifetime of the product

focus on the customer,
using customer language

focus on the architecture,
using technology language

Finally, an Area Product Owner is different than a supporting Product Owner—someone
that works with one or two teams to help a busy overall Product Owner. An Area Product
Owner has different responsibilities and focus, and works with (probably) at least four
teams, not just with one. This avoids local optimization toward the activities of one team.

Conclusion

Feature teams are stable teams that are given complete customer-centric features. These
teams resolve local optimizations and extra coordination overhead caused by component
team organizations. However, feature teams are not without challenges themselves.

Requirement areas scale the feature team concept by creating customer-centric views on
the overall Product Backlog and thus creating a structure that allows feature teams to be
scaled up to any size.

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
8	
 	
 	
 	
 	
 	
 All Rights Reserved

Table 3. requirement areas vs. development areas

http://www.featureteamprimer.org
http://www.featureteamprimer.org

References

Chapters:

Introduction
Systems Thinking
Lean
Queueing Theory
False Dichotomies
Be Agile
Feature Teams
Teams
Requirement Areas
Organization
Large-Scale Scrum

Chapters:

Large-Scale Scrum
Test
Product Management
Planning
Coordination
Requirements
Design
Legacy Code
Continuous Integration
Inspect & Adapt
Multisite
Offshore
Contracts

Feature Team Primer

	
 	
 	
 	
 	
 	
 www.featureteamprimer.org
	
 	
 	
 	
 	
 Copyright (c) 2010 Craig Larman and Bas Vodde
9	
 	
 	
 	
 	
 	
 All Rights Reserved

http://www.featureteamprimer.org
http://www.featureteamprimer.org

